

Glucose Metabolism in Pregnancy

Carbohydrate metabolism

- Organs involving in maintaining blood glucose level
 - * Liver
 - * Muscle
 - * Adipose tissue

Major hormones in CHO metabolism

***** Insulin

- ***** Counterregulatory hormones:
 - * Glucagon
 - ***** Catecholamines
 - **▲** Cortisol
 - **▲** Growth hormone

Glucose metabolism in normal pregnancy

- ✓ Pregnancy is characterized by a complex endocrine metabolic adaptations, which don't reflect a pathological condition.
- ✓ These adaptations are necessary to ensure a continuous supply of nutrients & energy demands of the growing fetus and to prepare maternal organism for delivery & lactation.
- ✓ These metabolic adaptations are progressive & may highlighted in gestational diabetes mellitus (GDM).

Adaptations:

- ✓ Impaired insulin sensitivity
- ✓ Increased beta- cell response
- ✓ Altered blood glucose level
- ✓ Change in circulatory FFAs, TGs, CHOL & phospholipids.

Insulin Resistance (IR)

- ✓ During the first trimester of pregnancy, insulin sensitivity is normal if not higher than normal.
- ✓ As pregnancy progresses, a condition of IR come in progress.
- ✓ The deterioration of insulin action being more marked at the skeletal muscle than adipose tissue.

Insulin Resistance (IR)

- ✓ The development of GDM is associated with more severity of IR.
- ✓ In GDM mothers, a lower insulin sensitivity is likely to be present both before and after pregnancy.
- ✓ The degree of IR seems to be influenced by obesity & inheritance.

✓ According to other studies, with the progression of pregnancy, insulin sensitivity can be reduced as much as 60 to 80%.

Why insulin resistance?

A physiological event favoring glucose supply to the fetus.

✓ The reduced insulin-mediated utilization of glucose switches the maternal energy metabolism from carbohydrates to lipid substrates (free fatty acids), redirecting carbohydrates toward the fetal tissues.

Mechanism of insulin resistance in pregnancy

The cellular mechanism of insulin resistance in pregnancy is *multifactorial* and involves several steps of the intracellular generation and propagation of the insulin signal.

Insulin Secretion

✓ Both in normal pregnancy and in GDM, insulin secretion increases steadily from the first trimester and reaches to its peak in the third, returning to normal values after delivery.

Hyperinsulinemia

- *Increased circulating immunoreactive insulin in late pregnancy compared with non-pregnant women (intact form).
- *Whole-body insulin kinetic are similar in pregnant & non-pregnant women.
- *No difference in hepatic insulin extraction.

Hyperinsulinemia of pregnancy is due to enhanced pancrearic beta-cell function.

To satisfy these needs during normal pregnancy and in pregnancy with GDM:

The β -cell undergoes significant structural and functional changes including:

- (1) increased insulin secretion
- (2) increased insulin synthesis
- (3) enhanced utilization and oxidation of glucose
- (4) accelerated β -cell proliferation and increased islet volume
- (5) higher cAMP metabolism

Insulin degradation

** Increased insulin degradation during pregnancy due to:

- * Placental enzymes with insulinase activity
- * Membrane- associated insulin-degrading activity

Hormones associated with modifications in insulin secretion and action

✓ Estrogens

- **↑** Insulin concentration
- **↑** Insulin binding

- **✓** Progesterone
- **↓ Glucose transport**
- **↓ Insulin binding**
- **↓** Suppression of insulin- induced

hepatic gluconeogenesis

Continue:

↑ Insulin resistance ✓ Cortisol **↓** Phosphorylation of insulin receptor ↓IRS-1 ✓ placental hormones (hPL, GH) **↓** Insulin sensitivity **↑** Insulin secretion **↑ Insulin synthesis** ↑ Utilization and glucose oxidation ↑ cAMP metabolism ↑ **β-cell number** ↑ β-cell mass ↑ Insulin resistance (?) ✓ Leptin ✓ Glucagon ↑ Insulin resistance

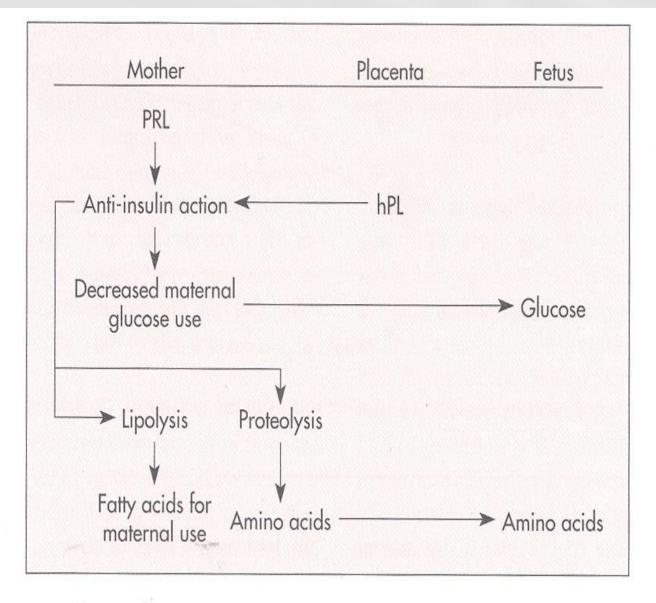


Figure 10-12 Role of human placental lactogen (bPL) and prolactin (PRL) in altering maternal metabolism to provide amino acids and glucose to fetus.

Adaptations:

- ✓ Impaired insulin sensitivity
- ✓ Increased beta- cell response
- ✓ Altered blood glucose level
- ✓ Change in circulatory FFAs, TGs, CHOL & phospholipids.