Chronic Kidney Disease

Dr Soraya khajehrezaei

 CKD is defined as abnormalities of kidney structure or function, present for >3 months

 term end-stage renal disease represents a stage of CKD where the accumulation of toxins, fluid, and electrolytes normally excreted by the kidneys results in the uremic syndrome

Diagnosis

- Bilateral Small size Kidneys
- Lab data
- Previous history (3 months ago)
- Nocturia
- Risk of worsening of kidney function is closely linked to the amount of *albuminuria*
 - CKD staging system according to Scr and albumin excretion
 - marker for the presence of microvascular disease

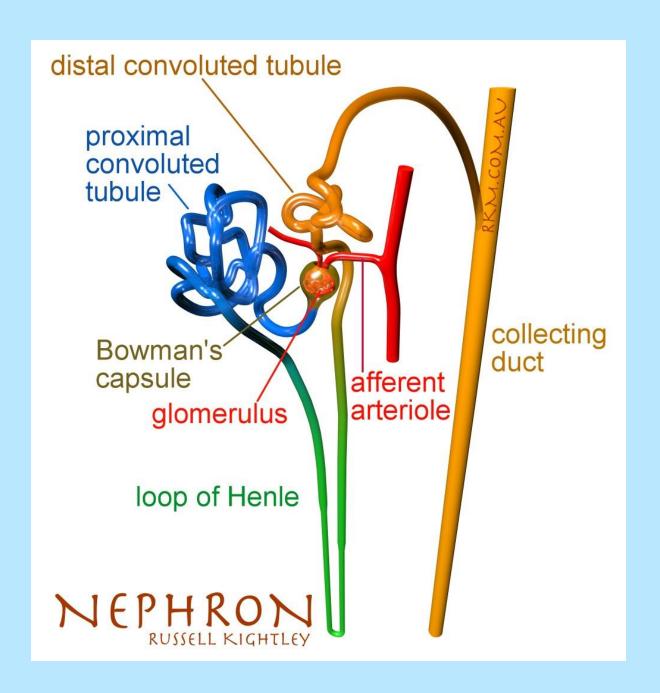
Renal failure

Differentiation between acute and chronic renal failure

	Acute	Chronic	
History	Short (days- week)	Long (month-years)	
Haemoglobin concentration	Normal	Low	
Renal size	Normal	Reduced	
Renal osteodystrophy	Absent	Present	
Peripheral neuropathy	Absent	Present	
Serum Creatinine concentration	Acute reversible increase	Chronic irreversible	

Pathophysiology

Two mechanisms:


- initiating mechanisms specific to the underlying etiology
 - genetically determined abnormalities in kidney development or integrity
 - immune complex deposition
 - inflammation in certain types of glomerulonephritis
 - toxin exposure in certain diseases of the renal tubules and interstitium
- 2. progressive mechanisms involving hyperfiltration and hypertrophy of the remaining viable nephrons:
 - Reduction of renal mass, irrespective of underlying etiology

Hyperfiltration

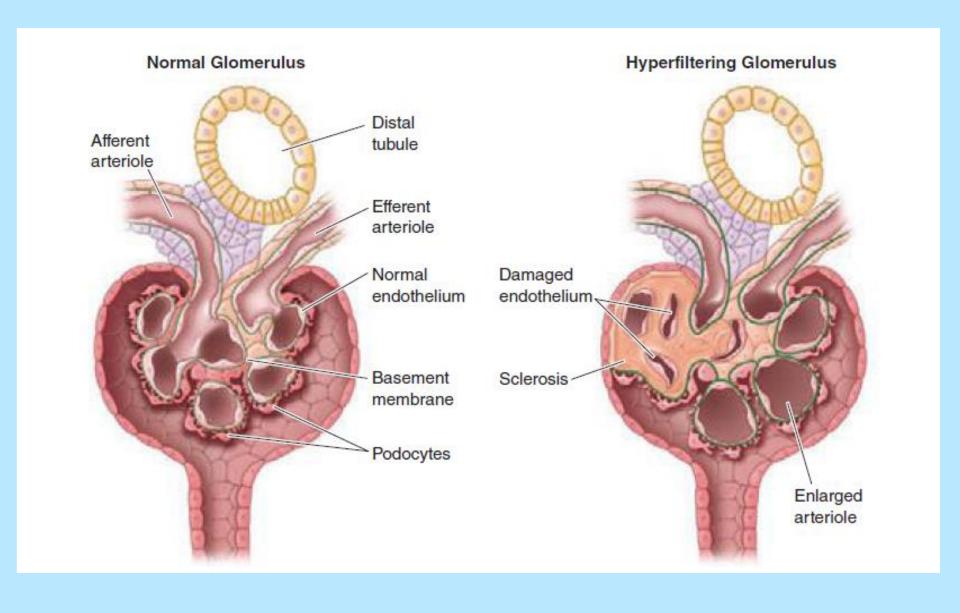
- At first: adaptive
- Final result: maladaptive because increased pressure and flow within the nephron predisposes to
 - distortion of glomerular architecture
 - abnormal podocyte function,
 - disruption of the filtration barrier
- leading to sclerosis and dropout of the remaining nephrons

At risk patient:

- Small for gestational age
- Low birth weight
- Childhood obesity
- Hypertension
- Diabetes mellitus
- Autoimmune disease
- Advanced age
- African ancestry
- Family history of kidney disease
- Previous episode of acute kidney injury
- Presence of proteinuria
- Abnormal urinary sediment
- Structural abnormalities of the urinary tract
- Hereditary disorders: ADPKD, Alport

•GFR (~120 mL/min per 1.73 m2)

After 3rd decade: decline~1 mL/min per year per
1.73 m2


• The equations for estimating GFR are valid only if the patient is in steady state, that is, the serum creatinine is neither rising nor falling over days.

• The mean GFR is lower in women than in men .

Prognosis of CKD by GFR and albuminuria categories: KDIGO 2012			Persistent albuminuria categories description and range			
			A1	A2	А3	
			Normal to mildly increased	Moderately increased	Severely increased	
			<30 mg/g <3 mg/mmol	30–300 mg/g 3–30 mg/mmol	>300 mg/g >30 mg/mmol	
GFR categories (ml/min/1.73 m²) description and range	G1	Normal or high	≥90			
	G2	Mildly decreased	60–89			
	G3a	Mildly to moderately decreased	45–59			
	G3b	Moderately to severely decreased	30–44			
	G4	Severely decreased	15–29			
	G5	Kidney failure	<15			

- Stages 1 & 2: no sign and symptom
- Stages 3 & 4: clinical and laboratory complications of CKD
 - Anemia and associated easy fatigability;
 - decreased appetite with progressive malnutrition
 - Ca/P
 - mineral-regulating hormones, such as 1,25(OH)2D3 (calcitriol), PTH, FGF-23
 - Na/K, water, acid-base homeostasis
- Stage 5: ESRD (uremic Syndrome)

 GFR in many elderly patients is compatible with stage 2 or 3 CKD.

TABLE 335-1

RECOMMENDED EQUATIONS FOR ESTIMATION OF GLOMERULAR FILTRATION RATE (GFR) USING SERUM CREATININE CONCENTRATION (S_{cr}), AGE, SEX, RACE, AND BODY WEIGHT

1. Equation from the Modification of Diet in Renal Disease study

Estimated GFR (mL/min per 1.73 m²) = $1.86 \times (S_{cr})^{-1.154} \times (age)^{-0.203}$

Multiply by 0.742 for women

Multiply by 1.21 for African ancestry

2. CKD-EPI equation

GFR = $141 \times \min(S_{c}/\kappa, 1)^{a} \times \max(S_{c}/\kappa, 1)^{-1.209} \times 0.993^{Age}$

Multiply by 1.018 for women

Multiply by 1.159 for African ancestry

where S_{cr} is serum creatinine in mg/dL, κ is 0.7 for females and 0.9 for males, α is -0.329 for females and -0.411 for males, min indicates the minimum of S_{cr}/κ or 1, and max indicates the maximum of S_{cr}/κ or 1.

Leading Categories of Etiologies of CKD (90%)

- Diabetic nephropathy
- Glomerulonephritis
- Hypertension-associated CKD (includes vascular and ischemic kidney disease and primary glomerular disease with associated hypertension)
- Autosomal dominant polycystic kidney disease
- Other cystic and tubulointerstitial nephropathy

Without overt evidence for a primary GN or tubulointerstitial kidney disease:CKD is attributed to HTN.Such individuals can be considered in two categories:

- 1. silent primary glomerulopathy e.g. FSGS without overt nephrotic or nephritic syndrome.
- 2. Progressive nephrosclerosis and hypertension is the renal correlate of a systemic vascular disease, such as elderly patients

PATHOPHYSIOLOGY & BIOCHEMISTRY OF UREMIA

- Hundreds of toxins other than urea and Cr (protein)
- A host of metabolic and endocrine functions normally performed by the kidneys is also impaired.
- anemia, malnutrition, and abnormal metabolism of carbohydrates, fats, and proteins
- Accumulation of PTH, FGF-23, insulin, glucagon, steroid hormones including vitamin D and sex hormones, and prolactin change with CKD.
- worsening systemic inflammation:
 - Elevated levels of C-reactive protein
 - Decreased levels of negative acute-phase reactants, such as albumin and fetuin

 Malnutrition-inflammation atherosclerosis/calcification syndrome: acceleration of vascular disease and comorbidity

Summary

- 1. Accumulation of toxins
- 2. Loss of kidney functions
- 3. Progressive kidney inflammation

CLINICAL & LABORATORY MANIFESTATIONS OF CKD AND UREMIA

Water and electrolytes, and acid-base disorders

Sodium and Water Homeostasis

- Total-body content of sodium and water: modestly increased, may not be apparent clinically
- Disruption in urinary excretion
 - Retention
 - HTN
 - Accelerate nephron loss

- Hyponatremia: not commonly
 - Often responds to water restriction

- Overt ECFV expansion:
 - peripheral edema, sometimes hypertension poorly responsive to therapy
 - ✓ Salt restriction.
 - ✓ loop diuretics, including furosemide, bumetanide, or torsemide
 - ✓ loop diuretics (higher doses) with metolazone (DCT)
 - ✓ No thiazide
 - ✓ Diurtic resistanse: Dialysis
- Inability of kidney in preservation of salt and water
 - Prone to hypovolemia

Potassium Homeostasis

- Augmented potassium excretion in the GI tract:defense mechanism
- Hyperkalemia causes:
 - increased dietary potassium intake, protein catabolism, hemolysis, hemorrhage, transfusion of stored red blood cells, and metabolic acidosis.
 - Medications: RAS inhibitors and spironolactone and amiloride, eplerenone, triamterene
 - Hyporeninemic hypoaldosteronism (DM), renal diseases that preferentially affect the distal nephron
 - obstructive uropathy
 - sickle cell nephropathy.

- Hypokalemia:
 - is not common
 - reduced dietary potassium intake, especially in association with:
 - excessive diuretic therapy
 - concurrent GI losses

Metabolic Acidosis

- Daily proton production: 50-100 meq
- common in advanced CKD
 - less ammonia production as urinary buffer.
 - Hyperkalemia further depresses ammonia production
- Hyperkalemia and hyperchloremic metabolic acidosis is often present, even at earlier stages of CKD.
 - In more advanced disease:
 - high anion gap (Limited urinary excretion of acid)
- In most patients
 - Metabolic acidosis is mild
 - pH is rarely < 7.32
 - corrected with oral sodium bicarbonate supplementation

- Compensatory mechanisms:
 - Increased amoniagenesis in intact nephrons
 - Bone buffering system
- when the serum bicarbonate concentration falls below 20–23:
 - may be associated with the development of protein catabolism
 - Alkali supplementation may attenuate the catabolic state and possibly slow CKD progression

Treatment:

- Salt restriction, loop diuretics
- Water restriction in hyponatremia
- Dietary restriction of potassium
- Dose reduction or avoidance of potassium retaining medication
- Potassium binding resins
- Dialysis
- Sodium bicarbonate

DISORDERS OF CALCIUM AND PHOSPHATE METABOLISM

Bone Manifestations of CKD

- high bone turnover with increased iPTH levels
 - osteitis fibrosa cystica
 - classic lesion of secondary hyperparathyroidism
 - bone pain and fragility, brown tumors, compression syndromes, and erythropoietin resistance
 - PTH as uremic toxin (muscle weakness, fibrosis of cardiac muscle, and nonspecific constitutional symptoms)

Osteitis fibrosa cystica

Brown tumor

- low bone turnover with low or normal PTH levels:
 - 1. adynamic bone disease
 - Risk factor: diabetics and the elderly
 - reduced bone volume and mineralization may result from: excessive suppression of PTH production, chronic inflammation, or both.
 - Suppression of PTH: use of vitamin D preparations or from excessive calcium exposure in the form of calcium-containing phosphate binders or high calcium dialysis solution
 - Complications: increased incidence of fracture and bone pain and an association with increased vascular and cardiac calcification or soft tissue calcification (tumoral calcinosis")
- 2. Osteomalacia: AL overload, vit D deficiency

These changes start to occur when the GFR falls below 60 mL/min

- FGF-23: phosphatonins that promotes renal phosphate excretion.
 - increase early in the course of CKD,
 - even before phosphate retention and hyperphosphatemia.
- FGF-23:
 - increased renal phosphate excretion
 - stimulation of PTH, which also increases renal phosphate excretion
 - suppression of the formation of 1,25(OH)2D3
- independent risk factor for LVH and mortality
- Elevated levels of FGF-23 may indicate the need for therapeutic intervention:
 - phosphate restriction or lowering agents

- Strong association between hyperphosphatemia and increased cardiovascular mortality rate
- Vascular and heart valve calcification
 - age
 - hyperphosphatemia
 - low PTH levels
- Hyperphosphatemia: vascular cells to an osteoblastlike profile, leading to vascular:
 - Calcification
 - Ossification

- Calciphylaxis:
 - livedoreticularis and advances to patches of ischemic necrosis, especially on the legs, thighs, abdomen, and breasts
 - vascular occlusion in association with extensive vascular and soft tissue calcification
- Matrix GLA protein: preventing vascular calcification
- Warfarin: decrease regeneration of matrix GLA protein

Treatment

- Hyperphosphatemia:low phosphate dite,phosphate-binding agent(calciumcontaining or non-calcium-containing)
- Hyperparathyroidism:calcitriol,cinacalcet

CARDIOVASCULAR ABNORMALITIES

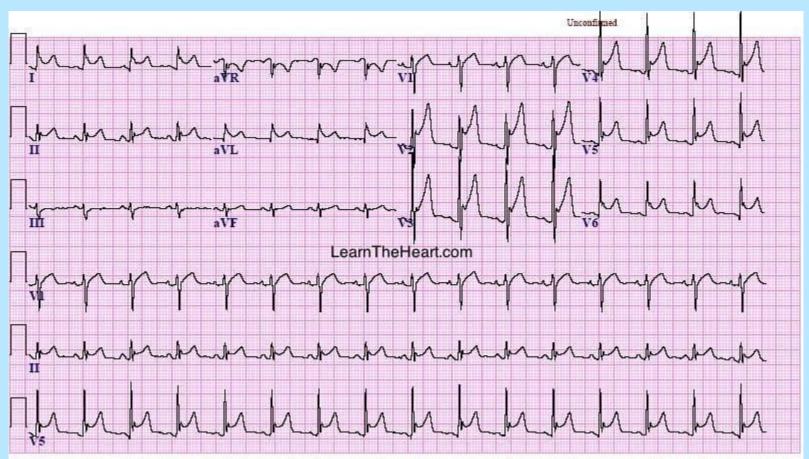
- Cardiovascular disease: occlusion coronary, cerebrovascular, and peripheral vascular disease
- compared to the age- and sex-matched general population ranges from 10- to 200-fold, depending on the stage of CKD
- Between 30 and 45% of those patients who do reach stage 5 CKD have advanced cardiovascular comlication

• Risk factors:

- Traditional ("classic"):hypertension, hypervolemia, dyslipidemia, sympathetic overactivity, and hyperhomocysteinemia
- 2. nontraditional (CKD-related): anemia, hyperphosphatemia, hyperparathyroidism, increased FGF-23, sleep apnea, and generalized inflammation

- The inflammatory state:
 - accelerate vascular occlusive disease
 - low levels of fetuin: more rapid vascular calcification
- AugmentMI:LVH, microvascular disease, recurrent hypotension in HD patients
- Cardiac troponin levels are elevated in CKD without evidence of MI.Serial measurements may be needed
- HF:secondary to MI,LVH, diastolic dysfunction, CMP, salt and water retention, anemia, sleep apnea
- Low pressure Plural Effusion: With increased permeability of alveolar capillary membrane
- HTN: accelerated nephron loss

Treatment


- CKD with diabetes or proteinuria >1gr per
 24h,BP should be reduced to <130/80mmHg.
- Salt restriction first line
- ACEinh/ARB:<30% Reduction of GFR can be tolerated
- Cardiovascular risk factors; Traditional and non-traditional

Pericardial Disease

- PE -/+ pericarditis
- Often in underdialyzed, non-adherent
- Diagnostic of pericarditis:
 - Chest pain with respiratory accentuation,
 - Friction rub
 - Pericardial effusion
 - Rarely tamponade
- Classic electrocardiographic abnormalities include PRinterval depression and diffuse

ST-segment elevation

Treatment:urgent dialysis,intensification of the dialysis,pericardial drainage in impending tamponad

HEMATOLOGIC ABNORMALITIES

Anemia

- A normocytic, normochromic anemia:
 - stage 3 CKD
 - almost universal by stage 4
- Adverse effects:
 - 1. decreased tissue oxygen delivery
 - 2. increased cardiac output
 - 3. ventricular dilation
 - 4. ventricular hypertrophy.

Clinical manifestation:

- Fatigue
- Diminished exercise tolerance
- Angina
- Heart failure
- Decreased cognition and mental acuity
- Impaired host defense against infection
- In children with CKD: growth restriction

TABLE 335-3 CAUSES OF ANEMIA IN CKD

- Relative deficiency of erythropoietin
 - Diminished red blood cell survival
- ★ Bleeding diathesis
 - Iron deficiency
 - Hyperparathyroidism/bone marrow fibrosis
 - Chronic inflammation
 - Folate or vitamin B, deficiency
 - Hemoglobinopathy
 - Comorbid conditions: hypo-/hyperthyroidism, pregnancy, HIV-associated disease, autoimmune disease, immunosuppressive drugs

Treatment

- ESA:obviated the need for regular blood transfusion
- Iron(po for CKD and PD patients,IV for hemodialysis patients)
- VitB12 and folate
- Anemia resistant causes: inflammation,inadequate dialysis,severe hyperparathyroidism,chronic blood loss,hemolysis,chronic infection or malignancy
- Target hemoglobin: 100-115g/l

Abnormal Hemostasis

- prolonged bleeding time
- decreased activity of platelet factor III
- abnormal platelet aggregation and adhesiveness
- impaired prothrombin consumption
- Decreased vwf
- Susceptibility to VTE

Treatment:

- DDAVP
- Cryoprecipitate
- IV conjugated estrogens
- Blood transfusions
- ESA therapy
- Optimal dialysis

NEUROMUSCULAR ABNORMALITIES

- Neuropathy
 - 1. CNS:
 - Mild disturbance:memory and concentration and sleep disturbance
 - Hiccup, cramps and twiching
 - In advanced untreated kidney failure:asterixis, myoclonus, seizures, and coma
 - 2. PNS: stage4 CKD
 - sensory nerves > motor
 - lower extremities > upper
 - distal parts of the extremities > proximal
 - 3. Autonomic
- Myopathy
- Subtle clinical manifestations of uremic neuromuscular disease usually become evident at stage 3 CKD

- "restless leg syndrome": ill-defined sensations of sometimes debilitating discomfort in the legs and feet relieved by frequent leg movement.
- If dialysis is not instituted soon after onset of sensory abnormalities, motor involvement follows, including muscle weakness
- Many of the these complications will resolve with dialysis

GASTROINTESTINAL AND NUTRITIONAL ABNORMALITIES

- Uremic fetor:
 - a urine-like odor on the breath
 - Breakdown of urea to ammonia in saliva
 - often associated with an unpleasant metallic taste (dysgeusia). Gastritis, peptic disease, and mucosal ulcerations at any level of the GI tract
- prone to constipation: worsened by of calcium and iron supplements.
- Retention of uremic toxins: anorexia, nausea, vomiting
- Protein restriction may put patient at risk for malnutrition that is indicaton for RRT

 Metabolic acidosis and the activation of inflammatory cytokines can promote protein catabolism

Assessment:

- dietary history, including food diary
- subjective global assessment; edema-free body weight
- measurement of urinary protein nitrogen appearance.
- Adjunctive tools: skinfold thickness, mid-arm muscle circumference
- additional laboratory tests: such as serum pre-albumin and cholesterol levels
- Dual-energy X-ray absorbtiometry:estimate lean body mass

ENDOCRINE-METABOLIC DISTURBANCES

- Glucose metabolism:
- 1. Slower decline in blood glucose after a glucose load.
- 2. FBS: normal or only slightly elevated
- 3. slight to moderate elevation in insulin levels both in the fasting and postprandial states.
- Progressive reduction in insulin requirement
- Oral anti-hyperglycemic agent:dose reduction or avoidance
- SGLT2inh(empagliflosin):reduction in kidney function decline and cardiovascular event

• In women:

- estrogen levels are low
- 2. Menstrual abnormalities
- 3. Infertility
- 4. inability to carry pregnancies to term
- 5. GFR ~40 mL/min:
 - high rate of spontaneous abortion
 - only ~20% of pregnancies leading to live births,

• In men:

- 1. reduced plasma testosterone
- 2. sexual dysfunction
- 3. oligospermia
- Adolescent children: delayed sexual maturation

DERMATOLOGIC ABNORMALITIES

- Pigmentation: deposition of retained pigmented metabolites, or *urochromes* in CKD or ESRD
- Pruritus: often tenacious even after dialysis
 - R/o scabies, and hyperphosphatemia
 - Local moisturizers
 - mild topical glucocorticoids
 - oral antihistamines
 - ultraviolet radiation

- Nephrogenic fibrosing dermopathy:unique to CKD
 - 1. progressive subcutaneous induration, especially on the arms and legs.
 - 2. very rarely in patients with CKD who have been exposed to gadolinium
- Current recommendations:
 - CKD stage 3 (GFR 30–59 mL/min): minimized exposure to Gad
 - CKD stages 4–5 (GFR <30 mL/min): avoid the use of gadolinium agents
- rapid removal of gadolinium by hemodialysis (CKD or ESRD) shortly after the procedure may mitigate this complication

Management of patients with CKD

- History(PMH,FH,DH,GYN) and P/E:often subtle(BP,organ damage,funduscopy in DM,edema,..)
- Laboratory investigation:Search for underlying disease (Viral marker,vasculite marker,pro electrophoresis),CKD consequences(iron study,ca,cr vitD,PTH,VitB12,folate,urine pr...)
- Imaging studies:sono(presence of two kidneys,size,symmetry,mass,obstraction,length),CT, MRI,Nuclear medicine,VCUG(reflux nephropathy),radiographic contrast(precausion)

Kidney biopsy:not advised in CKD(likelihood of bleeding, scarring, time of specific therapy has passed) contraindication include HTN, active UTI, bleeding diathesis, severe obesity If indicated:desmopressin, dialysis prior to bx

CKD Treatment

- Superimpose processes: ECFV depletion, uncontrolled HTN, UTI, nephrotoxic, obstructive urophathy, flare of original disease
- Slowing the progression of CKD: decline glomerular HTN and Proteinuria with ACEinh or ARB, NDHP CCB(diltiazem, verapamil). Target BP:130/80
- Dose adjustment:may not be needed for agents >70% excretion nonrenal.some drugs should be avoided
- RRT:Dialysis,TX
- Patient education, social support