
## CHRONIC KIDNEY DISEASE

#### DR SORAYA KHAJEH REZAEI

### **DEFINITION**

 CKD is defined as abnormalities of kidney structure or function, present for >3 months

•term *end-stage renal disease* represents a stage of CKD where the accumulation of toxins, fluid, and electrolytes normally excreted by the kidneys results in the *uremic syndrome* 



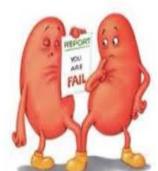


More than 1 in 7

15% of US adults are estimated to have chronic kidney disease—that is about 37 million people.



#### **DIAGNOSIS**


- Bilateral Small size Kidneys
- Lab data
- Previous history (3 months ago)
- Nocturia
- Risk of worsening of kidney function is closely linked to the amount of albuminuria
  - CKD staging system according to Scr and albumin excretion
  - marker for the presence of microvascular disease

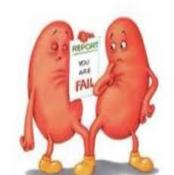


## Renal failure

Differentiation between acute and chronic renal failure

|                                | Acute                     | Chronic               |
|--------------------------------|---------------------------|-----------------------|
| History                        | Short (days-<br>week)     | Long<br>(month-years) |
| Haemoglobin concentration      | Normal                    | Low                   |
| Renal size                     | Normal                    | Reduced               |
| Renal osteodystrophy           | Absent                    | Present               |
| Peripheral neuropathy          | Absent                    | Present               |
| Serum Creatinine concentration | Acute reversible increase | Chronic irreversible  |




#### PATHOPHYSIOLOGY

#### Two mechanisms:

- 1. initiating mechanisms specific to the underlying etiology
  - genetically determined abnormalities in kidney development or integrity
  - immune complex deposition
  - inflammation in certain types of glomerulonephritis
  - toxin exposure in certain diseases of the renal tubules and interstitium
- 2. progressive mechanisms involving hyperfiltration and hypertrophy of the remaining viable nephrons:
  - Reduction of renal mass, irrespective of underlying etiolog




- At first: adaptive
- Final result: maladaptive because increased pressure and flow within the nephron predisposes to
  - distortion of glomerular architecture
  - abnormal podocyte function,
  - disruption of the filtration barrier
- leading to sclerosis and dropout of the remaining nephrons



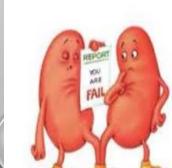
#### AT RISK PATIENT

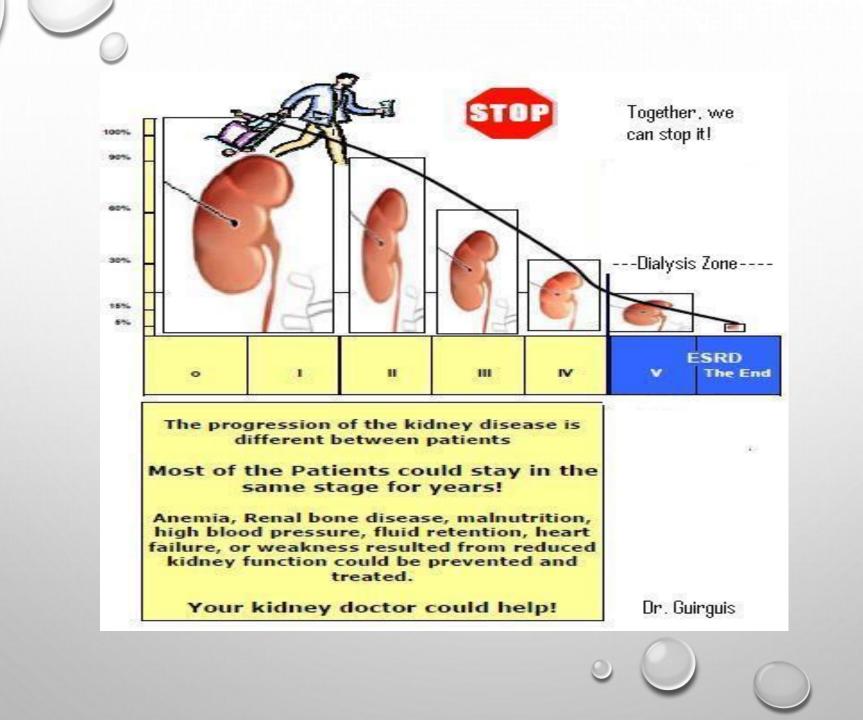
- Small for gestational age
- Low birth weight
- Childhood obesity
- Hypertension
- Diabetes mellitus
- Autoimmune disease
- Advanced age
- African ancestry
- Family history of kidney disease
- Previous episode of acute kidney injury
- Presence of proteinuria
- Abnormal urinary sediment
- Structural abnormalities of the urinary tract
- Hereditary disorders: ADPKD, Alport





#### KIDNEY FUNCTION


- GFR (~120 mL/min per 1.73 m2)
- After 3<sup>rd</sup> decade: decline~1 mL/min per year per 1.73 m2
- The equations for estimating GFR are valid only if the patient is in steady state, that is, the serum creatinine is neither rising nor falling over days.
- The mean GFR is lower in women than in men .




| Prognosis of CKD by GFR<br>and albuminuria categories:<br>KDIGO 2012 |     | Persistent albuminuria categories description and range |                        |                             |                          |  |
|----------------------------------------------------------------------|-----|---------------------------------------------------------|------------------------|-----------------------------|--------------------------|--|
|                                                                      |     | A1                                                      | A2                     | А3                          |                          |  |
|                                                                      |     | Normal to<br>mildly<br>increased                        | Moderately increased   | Severely<br>increased       |                          |  |
|                                                                      |     |                                                         | <30 mg/g<br><3 mg/mmol | 30–300 mg/g<br>3–30 mg/mmol | >300 mg/g<br>>30 mg/mmol |  |
| categories (ml/min/1.73 m²)<br>description and range                 | G1  | Normal or high                                          | ≥90                    |                             |                          |  |
|                                                                      | G2  | Mildly decreased                                        | 60–89                  |                             |                          |  |
|                                                                      | G3a | Mildly to moderately decreased                          | 45–59                  |                             |                          |  |
|                                                                      | G3b | Moderately to<br>severely decreased                     | 30–44                  |                             |                          |  |
| R cate desc                                                          | G4  | Severely decreased                                      | 15–29                  |                             |                          |  |



- Stages 1 & 2: no sign and symptom
- Stages 3 & 4: clinical and laboratory complications of CKD
  - Anemia and associated easy fatigability,
  - decreased appetite with progressive malnutrition
  - Ca/P
  - mineral-regulating hormones, such as 1,25(OH)2D3 (calcitriol), PTH, FGF-23
  - Na/K, water, acid-base homeostasis
- Stage 5: ESRD (uremic Syndrome)
- GFR in many elderly patients is compatible with stage 2 or 3 CKD.







#### TABLE 335-1

## RECOMMENDED EQUATIONS FOR ESTIMATION OF GLOMERULAR FILTRATION RATE (GFR) USING SERUM CREATININE CONCENTRATION ( $S_{cr}$ ), AGE, SEX, RACE, AND BODY WEIGHT

#### 1. Equation from the Modification of Diet in Renal Disease study

Estimated GFR (mL/min per 1.73 m²) =  $1.86 \times (S_{cr})^{-1.154} \times (age)^{-0.203}$ 

Multiply by 0.742 for women

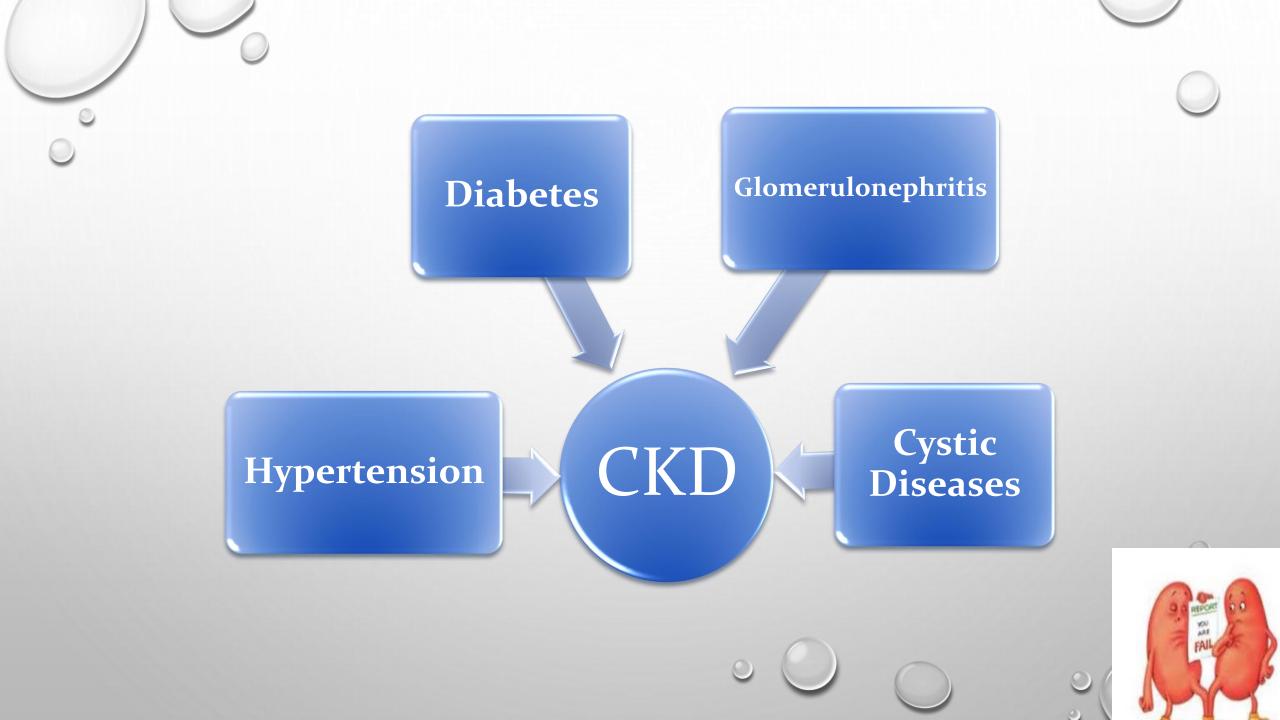
Multiply by 1.21 for African ancestry

#### 2. CKD-EPI equation

GFR =  $141 \times min(S_{cr}/\kappa, 1)^{a} \times max(S_{cr}/\kappa, 1)^{-1.209} \times 0.993^{Age}$ 

Multiply by 1.018 for women

Multiply by 1.159 for African ancestry


where  $S_{cr}$  is serum creatinine in mg/dL,  $\kappa$  is 0.7 for females and 0.9 for males,  $\alpha$  is -0.329 for females and -0.411 for males, min indicates the minimum of  $S_{cr}/\kappa$  or 1, and max indicates the maximum of  $S_{cr}/\kappa$  or 1.



## ETIOLOGIES OF CKD

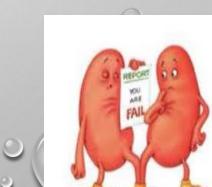
- Diabetic nephropathy
- Glomerulonephritis
- Hypertension-associated CKD (includes vascular and ischemic kidney disease and primary glomerular disease with associated hypertension)
- Autosomal dominant polycystic kidney disease
- Other cystic and tubulointerstitial nephropathy





## PATHOPHYSIOLOGY & BIOCHEMISTRY OF UREMIA

- Hundreds of toxins other than urea and Cr (protein)
- A host of metabolic and endocrine functions normally performed by the kidneys is also impaired.
- anemia, malnutrition, and abnormal metabolism of carbohydrates, fats, and proteins
- •Accumulation of PTH, FGF-23, insulin, glucagon, steroid hormones including vitamin D and sex hormones, and prolactin change with CKD.




- worsening systemic inflammation:
  - Elevated levels of C-reactive protein
  - Decreased levels of negative acute-phase reactants, such as albumin and fetuin

Malnutrition-inflammation atherosclerosis/calcification syndrome: acceleration of vascular disease and comorbidity



# CLINICAL & LABORATORY MANIFESTATIONS OF CKD AND UREMIA





- Total-body content of sodium and water: modestly increased, may not be apparent clinically
- Disruption in urinary excretion
  - Retention
    - HTN
      - Accelerate nephron loss
- Hyponatremia: not commonly
  - Often responds to water restriction

- Overt ECFV expansion:
  - peripheral edema, sometimes hypertension poorly responsive to therapy
  - ✓ Salt restriction.
  - ✓ diuretics (higher doses) with metolazone (DCT)
  - ✓ Diurtic resistanse: Dialysis
- Inability of kidney in preservation of salt and water
  - Prone to hypovolemia



Augmented potassium excretion in the GI tract:defense mechanism

#### Hyperkalemia causes:

- increased dietary potassium intake, protein catabolism, hemolysis, hemorrhage, transfusion of stored red blood cells, and metabolic acidosis.
- Medications: RAS inhibitors and spironolactone and amiloride, eplerenone, triamterene

- Hyporeninemic hypoaldosteronism (DM), renal diseases that preferentially affect the distal nephron
  - obstructive uropathy
  - sickle cell nephropathy

## Hypokalemia:

- is not common
- reduced dietary potassium intake, especially in association with:
  - excessive diuretic therapy
  - concurrent GI losses

#### **METABOLIC ACIDOSIS**

- Daily proton production: 50-100 meq
  - common in advanced CKD
    - less ammonia production as urinary buffer.
    - Hyperkalemia further depresses ammonia production
  - Hyperkalemia and hyperchloremic metabolic acidosis is often present , even at earlier stages of CKD.
    - In more advanced disease:
      - high anion gap (Limited urinary excretion of acid)
  - In most patients
    - Metabolic acidosis is mild
    - pH is rarely < 7.32
    - corrected with oral sodium bicarbonate supplementation



- Compensatory mechanisms:
  - Increased amoniagenesis in intact nephrons
  - Bone buffering system
  - when the serum bicarbonate concentration falls below 20–23:
    - · may be associated with the development of protein catabolism
    - Alkali supplementation may attenuate the catabolic state and possibly slow CKD progression

## ELECTROLYTES, AND ACID-BASE DISORDERS TREATMENT

- Salt restriction, loop diuretics
- Water restriction in hyponatremia
- Dietary restriction of potassium
- Dose reduction or avoidance of potassium retaining medication
- Potassium binding resins
- Dialysis
- Sodium bicarbonate

#### K/DOQI™ Clinical Practice Guidelines on Bone Metabolism Target Levels

|                          | CKD<br>Stage 3 | CKD<br>Stage 4 | CKD<br>Stage 5<br>(on dialysis)        |
|--------------------------|----------------|----------------|----------------------------------------|
| P<br>(mg/dL)             | 2.7 - 4.6      | 2.7 - 4.6      | 3.5 - 5.5*                             |
| Ca<br>(mg/dL)            | "Normal"       | "Normal"       | 8.4 - 9.5;<br>Hypercalcemia =<br>>10.2 |
| Intact<br>PTH<br>(pg/mL) | 35 - 70        | 70 - 110       | 150 - 300*                             |

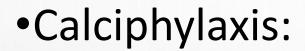
<sup>\*</sup>Evidence



## **Bone Manifestations of CKD**

- high bone turnover with increased iPTH levels
  - osteitis fibrosa cystica
  - classic lesion of secondary hyperparathyroidism
  - bone pain and fragility, brown tumors, compression syndromes, and erythropoietin resistance
  - PTH as uremic toxin (muscle weakness, fibrosis of cardiac muscle, and nonspecific constitutional symptoms)






- •low bone turnover with low or normal PTH levels:
  - 1. adynamic bone disease
    - Risk factor: diabetics and the elderly
    - reduced bone volume and mineralization may result from: excessive suppression of PTH production, chronic inflammation, or both.
    - Suppression of PTH: use of vitamin D preparations or from excessive calcium exposure in the form of calcium-containing phosphate binders or high calcium dialysis solution
    - Complications: increased incidence of fracture and bone pain and an association with increased vascular and cardiac calcification or soft tissue calcification (tumoral calcinosis")
- 2. Osteomalacia: AL overload, vit D deficiency

- FGF-23: phosphatonins that promotes renal phosphate excretion.
  - increase early in the course of CKD,
  - even before phosphate retention and hyperphosphatemia.
- FGF-23:
  - increased renal phosphate excretion
  - stimulation of PTH, which also increases renal phosphate excretion
  - suppression of the formation of 1,25(OH)2D3
- independent risk factor for LVH and mortality
- Elevated levels of FGF-23 may indicate the need for therapeutic intervention:
  - phosphate restriction or lowering agents

- Strong association between hyperphosphatemia and increased cardiovascular mortality rate
  - Vascular and heart valve calcification
    - age
    - hyperphosphatemia
    - low PTH levels
  - Hyperphosphatemia: vascular cells to an osteoblast-like profile, leading to vascular:
    - Calcification
    - Ossification



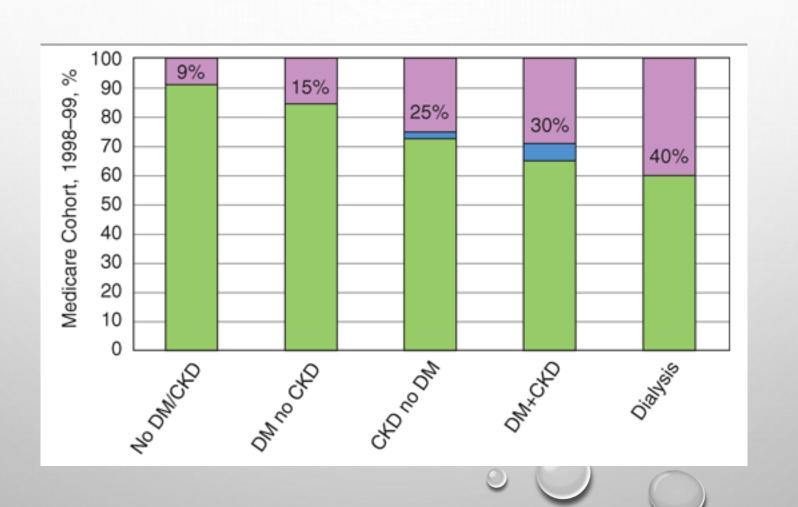


- livedoreticularis and advances to patches of ischemic necrosis, especially on the legs, thighs, abdomen, and breasts
- vascular occlusion in association with extensive vascular and soft tissue calcification
- Matrix GLA protein: preventing vascular calcification
- Warfarin: decrease regeneration of matrix GLA protein








## CKD MBD TREATMEN

 Hyperphosphatemia:low phosphate dite,phosphate-binding agent(calcium-containing or non-calcium-containing)

Hyperparathyroidism:calcitriol,cinacalcet



#### CARDIOVASCULAR ABNORMALITIES



## CARDIOVASCULAR ABNORMALITIES

- Cardiovascular disease: occlusion coronary, cerebrovascular, and peripheral vascular disease
- compared to the age- and sex-matched general population ranges from *10- to 200-fold*, depending on the stage of CKD
- Between 30 and 45% of those patients who do reach stage 5 CKD have advanced cardiovascular comlication
- Risk factors:
- 1. Traditional ("classic"):hypertension, hypervolemia, dyslipidemia, sympathetic overactivity, and hyperhomocysteinemia
- 2. nontraditional (CKD-related): anemia, hyperphosphatemia, hyperparathyroidism, increased FGF-23, sleep apnea, and generalized inflammation

#### Traditional Risk Factors Non-traditional Risk Factors Elevated IL-1, II-6, TNFα Smoking Diabetes Genetics Oxidation (OxLDL) HTN **↑** Homocysteine Advanced glycation end-products Age Dyslipidemia Carbonyl stress Cardiovascular Fractures disease in CKD Low fetuin-A Abnormal bone Abnormal mineral metabolism

- The inflammatory state:
  - accelerate vascular occlusive disease
- low levels of fetuin: more rapid vascular calcification
- AugmentMI:LVH, microvascular disease, recurrent hypotension in HD patients
- Cardiac troponin levels are elevated in CKD without evidence of MI.Serial measurements may be needed
- HF:secondary to MI,LVH, diastolic dysfunction, CMP, salt and water retention, anemia, sleep apnea
- Low pressure Plural Effusion: With increased permeability of alveolar capillary membrane
- HTN: accelerated nephron loss

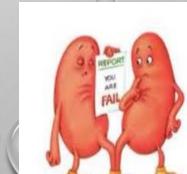


#### CVD TREATMENT

- •CKD with diabetes or proteinuria >1gr per 24h,BP should be reduced to <130/80mmHg.
- Salt restriction first line
- ACEinh/ARB:<30% Reduction of GFR can be tolerated</li>
- Cardiovascular risk factors; Traditional and non-traditional



#### PERICARDIAL DISEASE


- PE -/+ pericarditis
  - Often in underdialyzed,non-adherent
  - Diagnostic of pericarditis:
    - Chest pain with respiratory accentuation,
    - Friction rub
    - Pericardial effusion
    - Rarely tamponade
  - Classic electrocardiographic abnormalities include PR-interval depression and diffuse
    - ST-segment elevation

Treatment:urgent dialysis,intensification of the dialysis,pericardial drainage in impending tamponad



## HEMATOLOGIC ABNORMALITIES

- ANEMIA
- A normocytic, normochromic anemia:
  - stage 3 CKD
  - almost universal by stage 4
- Adverse effects:
  - 1. decreased tissue oxygen delivery
  - 2. increased cardiac output
  - 3. ventricular dilation
  - 4. ventricular hypertrophy.





- Fatigue
- Diminished exercise tolerance
- Angina
- Heart failure
- Decreased cognition and mental acuity
- Impaired host defense against infection
- •In children with CKD: growth restriction

#### TABLE 335-3 CAUSES OF ANEMIA IN CKD

Relative deficiency of erythropoietin

Diminished red blood cell survival

Bleeding diathesis

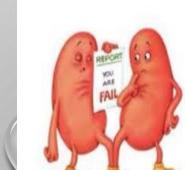
Iron deficiency

Hyperparathyroidism/bone marrow fibrosis

Chronic inflammation

Folate or vitamin B<sub>12</sub> deficiency

Hemoglobinopathy


Comorbid conditions: hypo-/hyperthyroidism, pregnancy, HIV-associated disease, autoimmune disease, immunosuppressive drugs





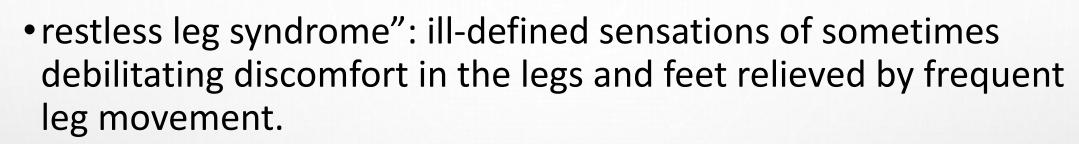
#### ANEMIA TREATMENT

- ESA:obviated the need for regular blood transfusion
- Iron(po for CKD and PD patients, IV for hemodialysis patients)
- VitB12 and folate
- Anemia resistant causes: inflammation, inadequate dialysis, severe hyperparathyroidism, chronic blood loss, hemolysis, chronic infection or malignancy
- Target hemoglobin: 100-115g/l



#### **ABNORMAL HEMOSTASIS**

- prolonged bleeding time
- decreased activity of platelet factor III
- abnormal platelet aggregation and adhesiveness
- impaired prothrombin consumption
- Decreased vwf
- Susceptibility to VTE


#### **Treatment:**

- DDAVP
- Cryoprecipitate
- IV conjugated estrogens
- Blood transfusions
- ESA therapy
- Optimal dialysis



## **NEUROMUSCULAR ABNORMALITIES**

- Neuropathy
  - 1. CNS:
    - Mild disturbance: memory and concentration and sleep disturbance
    - Hiccup, cramps and twiching
    - In advanced untreated kidney failure:asterixis, myoclonus, seizures, and coma
  - 2. PNS: stage4 CKD
    - sensory nerves > motor
    - lower extremities > upper
    - distal parts of the extremities > proximal
  - 3. Autonomic
- Myopathy
- Subtle clinical manifestations of uremic neuromuscular disease usually become evident at stage 3 CKD



- If dialysis is not instituted soon after onset of sensory abnormalities, motor involvement follows, including muscle weakness
- Many of the these complications will resolve with dialysis



| Neurological disorder              | Prevalence                        | Clinical features                                                                                                                 | Management                                                                                                                  |
|------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Cognitive dysfunction              | 30–40% of patients<br>on dialysis | Impairments in memory<br>and executive function                                                                                   | Most effective: renal transplantation                                                                                       |
|                                    |                                   |                                                                                                                                   | Other option: erythropoletin                                                                                                |
| Restless legs<br>syndrome          | 15–20% of patients<br>with CKD    | Subjective urge to move the legs,<br>worse nocturnally; symptoms<br>exacerbated by inactivity and<br>relieved by movement         | Most effective: dopaminergic agonists;<br>levodopa                                                                          |
|                                    |                                   |                                                                                                                                   | Other option: advice regarding sleep hygiene                                                                                |
| Length-dependent uremic neuropathy | 90% of patients<br>with CKD       | Sensory loss, weakness and wasting, maximal distally; absence of ankle jerks; lower limbs more severely affected than upper limbs | Most effective: transplantation, adequate dialysis (increase frequency or use high-flux dialysis); neuropathic pain therapy |
|                                    |                                   |                                                                                                                                   | Other options: vitamin supplementation;<br>strict potassium restriction; erythropoletin;<br>exercise program                |
| Autonomic neuropathy               | ~60% of patients<br>with CKD      | Impotence; postural hypotension;<br>cardiac arrhythmia; symptomatic<br>intradialytic hypotension                                  | Most effective: transplantation; adequate dialysis; sildenafil to treat impotence                                           |
|                                    |                                   |                                                                                                                                   | Other option: midodrine to treat intradialytic hypotension                                                                  |
| Carpal tunnel syndrome             | 5-30% of patients<br>with CKD     | Hand paresthesia and numbness;<br>weak thumb abduction                                                                            | Most effective: splinting; local steroid<br>injection; surgical decompression                                               |
| Ischemic monomelic neuropathy      | Rare in CKD                       | Diffuse weakness and sensory<br>loss distal to an arteriovenous<br>fistula                                                        | Immediate fistula banding or ligation                                                                                       |
| Uremic myopathy                    | 50% of patients with CKD          | Proximal weakness of the<br>lower limbs                                                                                           | Most effective: adequate dialysis; exercise program; adequate nutrition                                                     |
|                                    |                                   |                                                                                                                                   | Other options: erythropoletin; L-carnitine                                                                                  |

Abbreviation: CKD, chronic kidney disease.

# GASTROINTESTINAL AND NUTRITIONAL ABNORMALITIES

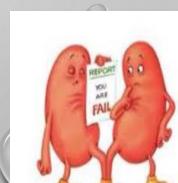
- Uremic fetor:
  - a urine-like odor on the breath
  - Breakdown of urea to ammonia in saliva
  - often associated with an unpleasant metallic taste (dysgeusia).
     Gastritis, peptic disease, and mucosal ulcerations at any level of the GI tract
- prone to constipation: worsened by of calcium and iron supplements.
- · Retention of uremic toxins: anorexia, nausea, vomiting
- Protein restriction may put patient at risk for malnutrition that is indicaton for RRT

#### **ENDOCRINE-METABOLIC DISTURBANCES**


- Glucose metabolism:
- 1. Slower decline in blood glucose after a glucose load.
- 2. FBS: normal or only slightly elevated
- 3. slight to moderate elevation in insulin levels both in the fasting and postprandial states.
- Progressive reduction in insulin requirement
- Oral anti-hyperglycemic agent:dose reduction or avoidance
- SGLT2inh(empagliflosin):reduction in kidney function decline and cardiovascular event

#### • In women:

- 1. estrogen levels are low
- 2. Menstrual abnormalities
- 3. Infertility
- 4. inability to carry pregnancies to term
- 5. GFR ~40 mL/min:
  - high rate of spontaneous abortion
  - only ~20% of pregnancies leading to live births,


#### • In men:

- 1. reduced plasma testosterone
- 2. sexual dysfunction
- 3. oligospermia
- Adolescent children: delayed sexual maturation




#### **DERMATOLOGIC ABNORMALITIES**

- Pigmentation: deposition of retained pigmented metabolites, or urochromes in CKD or ESRD
- Pruritus: often tenacious even after dialysis
  - R/o scabies, and hyperphosphatemia
  - Local moisturizers
  - mild topical glucocorticoids
  - oral antihistamines
  - ultraviolet radiation



- Nephrogenic fibrosing dermopathy:unique to CKD
  - 1. progressive subcutaneous induration, especially on the arms and legs.
  - 2. very rarely in patients with CKD who have been exposed to gadolinium

- Current recommendations:
  - CKD stage 3 (GFR 30–59 mL/min): minimized exposure to Gad
  - CKD stages 4–5 (GFR <30 mL/min): avoid the use of gadolinium agents
- rapid removal of gadolinium by hemodialysis (CKD or ESRD) shortly after the procedure may mitigate this complication



# MANAGEMENT OF PATIENTS WITH CKD

History(PMH,FH,DH,GYN) and P/E:often subtle(BP,organ damage,funduscopy in DM,edema,..)

• Laboratory investigation: Search for underlying disease (Viral marker, vasculite marker, pro electrophoresis), CKD consequences (iron study, ca, cr vitD, PTH, VitB12, folate, urine pr...)

 Imaging studies:sono(presence of two kidneys,size,symmetry,mass,obstraction,length),CT,MRI,Nuclear medicine,VCUG(reflux nephropathy),radiographic contrast(precausion)

Kidney biopsy:not advised in CKD(likelihood of bleeding,scarring,time of specific therapy has passed)contraindication include HTN,active UTI,bleeding diathesis,severe obesity If indicated:desmopressin,dialysis prior to bx

# Antihyperlipidemic therapy

- Statins slow the rate of decline in renal function
- Statins have antiproteinuric activity
- Improve cardiovascular outcomes in patients with CKD
- Antiinflammatory effect
- Target: LDL-C < 100 mg/dL





#### SLOWING THE PROGRESSION

- Control of Blood Glucose
- Control of intraglomerular hypertension
- Antihypertensive therapy
- Antihyperlipidemic therapy



## CONTROL OF INTRAGLOMERULAR HYPERTENSION

- Use of ACEI or ARBs
  - In diabetic nephropathy and nondiabetic chronic kidney diseases
  - The greatest benefit in patients with higher degrees of proteinuria

## Potential Reno protective Effects of Angiotensin-Converting Enzyme Inhibitors

- Inhibit tubule sodium resorption
- Decrease arterial pressure
- Decrease aldosterone production
- Decrease proteinuria
- Improve altered lipid profiles
- Decrease renal vascular resistance
- Reduce scarring and fibrosis
- Attenuate oxidative stress and free radicals

## **CKD TREATMENT**

- Superimpose processes: ECFV depletion, uncontrolled HTN, UTI, nephrotoxic, obstructive urophathy, flare of original disease
- Slowing the progression of CKD: decline glomerular HTN and Proteinuria with ACEinh or ARB, NDHP CCB (diltiazem, verapamil) (SGLT2 inh. Target BP: 130/80
- Other targets for renal protection: Protein restriction Smoking cessation. Treatment of chronic metabolic acidosis with supplemental bicarbonate may slow the progression to end-stage kidney disease. Glycemic control
- Dose adjustment:may not be needed for agents >70% excretion nonrenal.some drugs should be avoided
- RRT:Dialysis,TX
- Patient education, social support