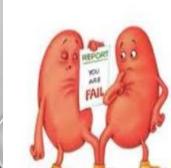


DEFINITION

 CKD is defined as abnormalities of kidney structure or function, present for >3 months

•Term *end-stage renal disease* represents a stage of CKD where the accumulation of toxins, fluid, and electrolytes normally excreted by the kidneys results in the *uremic syndrome*

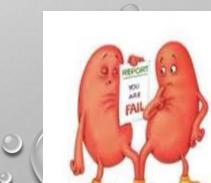
DIAGNOSIS


- Bilateral Small size Kidneys
- Lab data
- Previous history (3 months ago)
- Nocturia
- Risk of worsening of kidney function is closely linked to the amount of albuminuria
 - CKD staging system according to Scr and albumin excretion
 - marker for the presence of microvascular disease

AT RISK PATIENT

- Small for gestational age
- Low birth weight
- Childhood obesity
- Hypertension
- Diabetes mellitus
- Autoimmune disease
- Advanced age
- African ancestry
- Family history of kidney disease
- Previous episode of acute kidney injury
- Presence of proteinuria
- Abnormal urinary sediment
- Structural abnormalities of the urinary tract
- Hereditary disorders: ADPKD, Alport

- Stages 1 & 2: no sign and symptom
- Stages 3 & 4: clinical and laboratory complications of CKD
 - Anemia and associated easy fatigability,
 - decreased appetite with progressive malnutrition
 - Ca/P
 - mineral-regulating hormones, such as 1,25(OH)2D3 (calcitriol),
 PTH, FGF-23
 - Na/K, water, acid-base homeostasis
- Stage 5: ESRD (uremic Syndrome)
- GFR in many elderly patients is compatible with stage 2 or 3 CKD.


ETIOLOGIES OF CKD

- Diabetic nephropathy
- Glomerulonephritis
- Hypertension-associated CKD (includes vascular and ischemic kidney disease and primary glomerular disease with associated hypertension)
- Autosomal dominant polycystic kidney disease
- Other cystic and tubulointerstitial nephropathy

CLINICAL & LABORATORY MANIFESTATIONS OF CKD AND UREMIA

- Total-body content of sodium and water: modestly increased, may not be apparent clinically
- Disruption in urinary excretion
 - Retention
 - HTN
 - Accelerate nephron loss
- Hyponatremia: not commonly
 - Often responds to water restriction

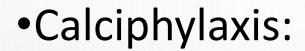
Augmented potassium excretion in the GI tract: defense mechanism

Hyperkalemia causes:

- increased dietary potassium intake, protein catabolism, hemolysis, hemorrhage, transfusion of stored red blood cells, and metabolic acidosis.
- Medications: RAS inhibitors and spironolactone and amiloride, eplerenone, triamterene

METABOLIC ACIDOSIS

- Daily proton production: 50-100 meq
 - common in advanced CKD
 - less ammonia production as urinary buffer.
 - Hyperkalemia further depresses ammonia production
 - Hyperkalemia and hyperchloremic metabolic acidosis is often present even at earlier stages of CKD.
 - In more advanced disease:
 - high anion gap (Limited urinary excretion of acid)
 - In most patients
 - Metabolic acidosis is mild
 - pH is rarely < 7.32
 - corrected with oral sodium bicarbonate supplementation



Bone Manifestations of CKD

- high bone turnover with increased iPTH levels
 - osteitis fibrosa cystica
 - classic lesion of secondary hyperparathyroidism
 - bone pain and fragility, brown tumors, compression syndromes, and erythropoietin resistance
 - PTH as uremic toxin (muscle weakness, fibrosis of cardiac muscle, and nonspecific constitutional symptoms)

- •low bone turnover with low or normal PTH levels:
 - 1. Adynamic bone disease
 - Risk factor: diabetics and the elderly
 - reduced bone volume and mineralization may result from: excessive suppression of PTH production, chronic inflammation, or both.
 - Suppression of PTH: use of vitamin D preparations or from excessive calcium exposure in the form of calcium-containing phosphate binders or high calcium dialysis solution
 - Complications: increased incidence of fracture and bone pain and an association with increased vascular and cardiac calcification or soft tissue calcification (tumoral calcinosis")
- 2. Osteomalacia: AL overload, vit D deficiency

- Livedo reticularis and advances to patches of ischemic necrosis, especially on the legs, thighs, abdomen, and breasts
- vascular occlusion in association with extensive vascular and soft tissue calcification
- Matrix GLA protein: preventing vascular calcification
- Warfarin: decrease regeneration of matrix GLA protein

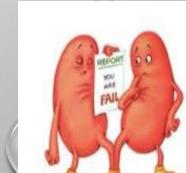
CKD MBD TREATMENT

 Hyperphosphatemia:low phosphate diet, phosphatebinding agent(calcium-containing or non-calciumcontaining)

• Hyperparathyroidism : calcitriol, cinacalcet

CARDIOVASCULAR ABNORMALITIES

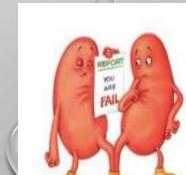
- Cardiovascular disease: occlusion coronary, cerebrovascular, and peripheral vascular disease
- compared to the age- and sex-matched general population ranges from *10- to 200-fold*, depending on the stage of CKD
- Between 30 and 45% of those patients who do reach stage 5 CKD have advanced cardiovascular complication
- · Risk factors:
- 1. Traditional ("classic"):hypertension, hypervolemia, dyslipidemia, sympathetic over activity, and hyper homocysteinemia
- 2. nontraditional (CKD-related): anemia, hyperphosphatemia, hyperparathyroidism, increased FGF-23, sleep apnea, and generalized inflammation


CVD TREATMENT

- •CKD with diabetes or proteinuria >1gr per 24h,BP should be reduced to <130/80mmHg.
- Salt restriction first line
- ACE inh /ARB:<30% Reduction of GFR can be tolerated
- Cardiovascular risk factors; Traditional and non-traditional

HEMATOLOGIC ABNORMALITIES

- ANEMIA
- A normocytic, normochromic anemia:
 - stage 3 CKD
 - almost universal by stage 4
- Adverse effects:
 - 1. decreased tissue oxygen delivery
 - 2. increased cardiac output
 - 3. ventricular dilation
 - 4. ventricular hypertrophy.



ABNORMAL HEMOSTASIS

- prolonged bleeding time
- decreased activity of platelet factor III
- abnormal platelet aggregation and adhesiveness
- impaired prothrombin consumption
- Decreased vwf
- Susceptibility to VTE

Treatment:

- DDAVP
- Cryoprecipitate
- IV conjugated estrogens
- Blood transfusions
- ESA therapy
- Optimal dialysis

NEUROMUSCULAR ABNORMALITIES

- Neuropathy
 - 1. CNS:
 - Mild disturbance: memory and concentration and sleep disturbance
 - Hiccup, cramps and twitching
 - In advanced untreated kidney failure: asterixis, myoclonus, seizures, and coma
 - 2. PNS: stage4 CKD
 - sensory nerves > motor
 - lower extremities > upper
 - distal parts of the extremities > proximal
 - 3. Autonomic
- Myopathy
- Subtle clinical manifestations of uremic neuromuscular disease usually become evident at stage 3 CKD

GASTROINTESTINAL AND NUTRITIONAL ABNORMALITIES

- Uremic fetor:
 - a urine-like odor on the breath
 - Breakdown of urea to ammonia in saliva
 - often associated with an unpleasant metallic taste (dysgeusia).
 Gastritis, peptic disease, and mucosal ulcerations at any level of the GI tract
- prone to constipation: worsened by of calcium and iron supplements.
- · Retention of uremic toxins: anorexia, nausea, vomiting
- Protein restriction may put patient at risk for malnutrition that is indication for RRT

ENDOCRINE-METABOLIC DISTURBANCES

- Glucose metabolism:
- 1. Slower decline in blood glucose after a glucose load.
- 2. FBS: normal or only slightly elevated
- 3. slight to moderate elevation in insulin levels both in the fasting and postprandial states.
- Progressive reduction in insulin requirement
- Oral anti-hyperglycemic agent : dose reduction or avoidance
- SGLT2inh(empagliflosin):reduction in kidney function decline and cardiovascular event

- Pigmentation: deposition of retained pigmented metabolites, or urochromes in CKD or ESRD
- Pruritus: often tenacious even after dialysis
 - R/o scabies, and hyperphosphatemia
 - Local moisturizers
 - mild topical glucocorticoids
 - oral antihistamines
 - ultraviolet radiation

MANAGEMENT OF PATIENTS WITH CKD

 History(PMH,FH,DH,GYN) and P/E: often subtle(BP, organ damage, fundoscopy in DM, edema,..)

Laboratory investigation: Search for underlying disease (Viral marker, vasculitis marker, pro electrophoresis), CKD consequences (iron study, ca, cr vitD, PTH, VitB12, folate, urine pr...)

• Imaging studies: sono (presence of two kidneys, size, symmetry, mass, obstruction, length), CT, MRI, Nuclear medicine, VCUG(reflux nephropathy), radiographic contrast(precaution)

Kidney biopsy: not advised in CKD(likelihood of bleeding, scarring, time of specific therapy has passed)contraindication include HTN, active UTI, bleeding diathesis, severe obesity

If indicated: desmopressin, dialysis prior to bx

SLOWING THE PROGRESSION

- Control of Blood Glucose
- Control of intraglomerular hypertension
- Antihypertensive therapy
- Antihyperlipidemic therapy

CKD TREATMENT

- Superimpose processes: ECFV depletion, uncontrolled HTN, UTI, nephrotoxic, obstructive urophathy, flare of original disease
- Slowing the progression of CKD: decline glomerular HTN and Proteinuria with ACE inh or ARB,NDHP CCB(diltiazem, verapamil) (SGLT2 inh. Target BP:130/80
- Other targets for renal protection: Protein restriction Smoking cessation. Treatment of chronic metabolic acidosis with supplemental bicarbonate may slow the progression to end-stage kidney disease. Glycemic control
- Dose adjustment: may not be needed for agents >70% excretion nonrenal. some drugs should be avoided
- RRT : Dialysis , TX
- Patient education , social support